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Abstract

Retail option trading has become an important feature of modern financial markets.

Since option contracts are in zero net supply, net imbalances are delta hedged by

financial intermediaries. We leverage a unique dataset that allows us to categorize

option trading by trader type to show that option delta hedge re-balancing trades

driven by uninformed retail traders affect market quality. This effect is seen in

multiple measures of liquidity measured using high-frequency data.
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1 Introduction

The last two decades have seen market access become easier for many groups of traders.

While the effects of high-frequency and algorithmic trading are now well-studied, the

effects of retail trader activity on markets is less well understood. Option trading in

particular has become easier for retail investors, and U.S. regulators have begun to worry

about how easily investors can trade options using apps like Robinhood. 1 2 While

cheaper and easier option trading seems like positive developments for investors this

trading can affect the market quality of the underlying asset because equity options

trading can create latent liquidity supply and demand for the underlying security. 3

Retail option trades create risk exposures for intermediaries which must be hedged by

trading in the underlying market - depending on the risk exposures of the intermediary

this trading can supply or demand liquidity from the stock market. This liquidity effect

is latent and predictable: The hedge rebalancing trade of the intermediary is a known

function of the realized movement in the underlying stock. In this paper we show that

retail option trading from 2011-2019 has been affecting the quality of the market for the

underlying stocks as measured by market liquidity.

The equity option market is imbalanced, for example, single stock call options are on

average oversupplied by retail investors implying that equity option market makers must

take the other side of the trade and manage the risk of the option until maturity. When

1Robinhood offers commission-free option trading, its average customer is 31 years old and has a
median account balance of $240 (reuters.com).

2https://www.wsj.com/articles/investors-are-using-robinhood-other-platforms-to-jump-into-options-
trades-worrying-u-s-regulators , The S.E.C. has solicited feedback on the current situation - see Securities
Exchange Act Release No. 92766 (August 27, 2021) and “Staff Report on Equity and Options Market
Structure Conditions in Early 2021”.

3Retail option traders are certainly inexperienced Bryzgalova et al. (2022) estimated that re-
tail investors lost $1.14 billion trading options from November 2019 to June 2021 (as reported at
bloomberg.com).
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the market maker is long the stock exposure through the net long option position they

need to buy (sell) more stock when the underlying price decreases (increases) to keep delta

neutral. In this case, delta hedge rebalance trades of market makers act as a stabilizing

force in the stock market. In situations where the equity option market maker is net short

the call option the mechanism works in reverse – the market maker demands liquidity

when the price increases or decreases which acts as a destabilizing force. This mechanism

suggests that retail option trading can directly affect market quality as measured by

liquidity.

In this paper, we empirically quantify the impact of retail option trading on liquidity

through the hedging activities of intermediaries. We first construct data on market quality

by calculating quoted, effective, and realized spreads and price impact using millisecond

resolution data for the years from 2011 to 2019. We combine this data with Open/Close

data from the CBOE C1 option exchange as well as the NASDAQ ISE exchange, which

allows us to estimate the amount of delta-hedging in the equity market due to retail

option trading.4 Our main variable net Γ captures the intensity of delta hedging of

option market makers induced by a change in the stock price.5 We then analyze the

relationship between the stock trading required to delta hedge options and stock market

liquidity at a daily level.

Our main finding is that when retail traders on net sell (buy) more options which increases

(decreases) net gamma that market liquidity is improved (deteriorates). For example, a

one standard deviation decrease in net-gamma causes a 11% increase in realized spreads

4The granularity of trade classification needed in this study has only been available since 2009 and
2011 from NASDAQ and CBOE, respectively.

5In option pricing terminology the delta is the first derivative of the option price with respect to
the underlying price and is used as a hedge ratio to remove first order risk from a portfolio of options.
Gamma is the term used for the second derivative of the option price with respect to the underlying
stock price, or the first derivative of the delta with respect to the stock price. This Gamma (denoted Γ)
captures the change in the hedge ratio induced by changes in prices and will be the main focus of our
study.
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and a 10% increase in price impact relative to the mean level of these measures. These

magnitudes are particularly large in light of the fact that the mechanism that is only

activated in periods when there is movement in the underlying security that induces

re-hedging of option portfolios by market makers.

To enhance our understanding of the impact of retail trading on market quality, we also

consider market conditions in which we expect the effect of latent liquidity to be stronger.

We use the setting of earnings announcements as prior research such as Johnson and So

(2018) has shown market makers adjust their spreads before earnings announcements as

they are exposed to more adverse selection risk. We expect that liquidity supply and

demand in the stock market due to the hedging of retail option trades will have more

impact when equity market makers supply less liquidity because these intermediary re-

hedging trades are not conditioning on information. We find the relationship between our

measure of net gamma and liquidity to be much larger in the period leading up to earnings

announcements, for example the main results on realized spreads are approximately twice

as large in these periods. These results suggest that the effects of retail option trading

are more pronounced when markets are already fragile.

We further consider the effects of information asymmetry using a split sample analysis.

We consider analyst dispersion of earnings forecasts, and analyst coverage as measures

of information asymmetry and measure whether the relationship between gamma and

liquidity is higher in stocks with higher information asymmetry. We find that the impact

of uninformed liquidity supply and demand driven by retail option trading is much larger

for stocks where the market making for the stock is subject to more adverse selection

risks. These results complement the findings for earnings periods - at times when adverse

selection risk is higher the impacts of hedge-rebalancing trades (as measured by net

gamma) on liquidity are larger.
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We consider several alternative explanations for our results and provide robustness tests.

First, we use the method of Ni et al. (2021) to show that our results are robust to removing

from our measure variation that could be related to informed trade in options by retail

investors, in fact, our results are even stronger when using this method. Another concern

is that retail option trading predicts volatility because retail traders are informed about

option volatility and trade on that information. Lakonishok et al. (2007) show that very

little trading is volatility-based – i.e. opening straddles or strangles - this is consistent

with anecdotal evidence that trading profitably on volatility information is extremely

difficult for non-sophisticated option traders. Nonetheless, we rule out this explanation by

showing that volatility trading strategies built using this information are never profitable

even when we assume that investors can trade at the midpoint of the bid-ask spread and

thus don’t have to pay large option transaction costs. We also show that the fact that

we use an estimate of net gamma has minimal impact on our results and that the result

is not driven by option expiration periods or the particular measure of net gamma that

we use.

Our results have policy implications. While earlier literature has studied whether the

listing of options can affect the underlying asset and found mixed results, our findings

make clear that this effect depends on the time-varying level of net Γ. Thus, an option

introduction could cause an increase in non-informational liquidity supply and demand

which improves market quality if retail investors are net short the options but this effect

could work in the opposite direction if retail investors start to take a net long position

in the options. This means regulators should pay attention not only to the existence of

an option market, but the current state of the market. Currently, option trading is still

dominated by the CBOE C1 exchange and the NASDAQ ISE exchange, however, the

number of trading venues are increasing over time so that market fragmentation could

make this hedge-rebalancing effect more difficult to track. This creates incentives for
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regulators to aggregate information relating to option trading on multiple exchanges. 6

2 Related Literature

Our results contribute to a large literature on the relationship between option trading and

market quality. Portfolio insurance strategies based on option replication were blamed

for the infamous October 1987 crash. Fedenia and Grammatikos (1992) find that options

listing decreases spreads on small stocks while increasing spreads on large stocks. Results

in Kumar et al. (1998) suggest that option listing increases various aspects of market

quality. Both Conrad (1989) and Detemple and Jorion (1990) find a volatility decrease

after option introduction, while Mayhew et al. (2000) find that option introduction in-

creases volatility when one controls for the endogeneity of option listing. Sorescu (2000)

looks at the effect of option introduction on stock prices and find that prices sometimes

increase and sometimes decrease. In a more recent study Hu (2018) finds that option

listing increases uninformed trading in the US between 2001 and 2010. Our results add

to this literature by explaining why options can affect market quality, while explaining

that the result can vary over time and depends on the general trading patterns of retail

option investors.

Financial technology can obscure this activity of market makers from many option end-

users. In particular, retail investors often don’t appreciate that as long as a market maker

is net-long or short options in a particular stock, their option trade has the same effect

as submitting a particular liquidity demand or supply schedule to the market with their

order. The delta hedging program will be a mechanical function of the underlying asset

6Evidence in Bryzgalova et al. (2022) and Ernst and Spatt (2022) suggests that relationships between
retail brokers, exchanges, and wholesalers and affiliated market makers are becoming increasingly complex
and that certain retail traders orders may end up concentrated on particular exchanges in the future.
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price change.7 This liquidity is latent in the sense that it is only realized if the underlying

price changes and in this way can pose a hidden threat to the quality of the underlying

market. 8

We also speak to the research on market access and market quality. Technology has

changed markets dramatically in recent decades, Hendershott et al. (2011) finds algorith-

mic trading improves liquidity and enhances the informativeness of quotes and Brogaard

et al. (2010) find that high-frequency-traders add substantially to the price discovery

process and often provide the best bid and ask quotes. Brogaard et al. (2018) find that

high-frequency-traders are reliable in times of market stress and do not seem to cause ex-

treme price movements. Boehmer et al. (2021) use an international sample and find that

algorithmic trading improves informational efficiency but increases short-term volatility

Chakrabarty et al. (2021) show that completely unfiltered market access may not be

beneficial for traders who demand liquidity. Our paper suggests retail option trading

that is completely unconstrained can cause changes in market quality. To the extent that

technology continues to remove frictions to retail option trading, the empirical effects we

document should become even stronger.

This paper also contributes to a burgeoning literature on the effects of derivative hedging

on stock market return characteristics. Baltussen et al. (2021) find evidence that short

gamma positions of option hedgers is related to intraday momentum in futures markets,

while Barbon et al. (2022) show that both momentum and mean reversion are driven

by leverage effects and hedge-rebalancing in ETF markets. Ni et al. (2021) show that

market maker option gamma is negatively related to daily absolute returns suggesting

7In some situations we may not observe other positions held by the market maker “an-axe” which
allows them to avoid delta-hedging, but we don’t expect this to have a large practical impact on our
results.

8Another example of a latent factor affecting liquidity is the existence of margins - Foley et al.
(2022) find that sudden increase in margin requirements during the covid-19 crisis resulted in withdrawn
liquidity.
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a feedback effect to from options to return volatility. There is also a large literature

on the effects of more exotic derivative products on financial market quality Auh and

Cho (2022) show that when payoffs of structured equity derivatives change, it can cause

significant price pressure of the underlying stock upon an event of dramatic payoff change

and that other market participants try to front-run these changes. Boehmer et al. (2015)

that the introduction of single-name credit default swap (CDS) contracts reduces market

quality of the underlying asset. The results in this paper complement these studies by

providing direct microstructure evidence that option trading affects market quality. A

distinct advantage of our setting is that by calculating market quality measures using

trades and quotes we can link the option gamma to quantities of interest to regulators

and prospective traders, allowing us to make statements about likely ex-ante market

quality rather than ex-post market characteristics.

We also connect to a theoretical literature on liquidity. Theories of liquidity typically map

liquidity to state variables like information asymmetry (Glosten and Milgrom (1985), and

Easley and O’hara (1987)), intermediary inventory costs (Amihud and Mendelson (1980)

and Ho and Stoll (1981)) and raw trade costs (Demsetz (1968)). However, some modern

theories include derivatives within models of liquidity. Ronnie Sircar and Papanicolaou

(1998) show theoretically how portfolio insurance strategies can increase the volatility

of the underlying when program traders must delta hedge their inventory. Wilmott and

Schönbucher (2000) also study the feedback effects of option replication trading. In a

recent study Huang et al. (2021) embed derivative trading into a model with informed

traders and show that delta hedging can reduce price impact in the underlying. Our

findings provide empirical evidence in support of these theoretical mechanisms.
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3 Retail option trading and latent liquidity

While equity securities have net-positive supply, equity options have net-zero supply - for

every option buyer, there must be an option writer. The classic theory of option pricing

of Scholes and Black (1973) and Merton (1973) shows that option pricing is intimately

linked with stock trading through a delta hedging argument in which a dynamically vary-

ing position in the stock is used to offset the risk exposure of the option position. Thus,

options are created by replication and this replication activity will require liquidity to be

demanded or supplied depending on the case situation. Early theories ruled out market

impact of the trading needed for option replication by the assumption of frictionless mar-

kets without transaction costs. 9 Removing the assumption of frictionless markets, allows

the stock-trading from dynamic delta hedging to impact the market for the underlying.

To fix ideas we focus on an individual stock and detail the relationships between the

liquidity supply and demand from option trading and market quality. First consider the

delta a given option contract 10

∆i,t =
∂Ci,t

∂Si,t

This represents the rate of change of the option price with respect to the stock price and

is the hedge ratio of first-order importance for an option market maker. The hedging

of options would be trivial if not for changes in this hedge ratio, but since the option

price is a nonlinear function of the stock price, this hedge ratio will change over time.

9In reality, equity option market-makers act as producers in the option market rather than mere
matching mechanisms, market makers for equities aim to make the spread and end the day without
holding any stock inventory. In an ideal world, equity option market makers would operate in a similar
fashion, matching equity option buyers and sellers, and taking the spread as compensation for risks such
as inventory, operational costs, and information asymmetry risk.

10We will use the Black-Scholes-Merton option price function to calculate closed-form values for the
option sensitivities

8



The first derivative of the option delta with respect to the stock price tells us how much

the hedge ratio will change when the stock price changes, and thus, allow us to predict

the mechanical trading of the option market maker given what we know about their net

option position and total net gamma.

Γi,t =
∂∆i,t

∂Si,t

=
∂2Ci,t

∂S2
i,t

Later we will detail the calculation of the net option position to be hedged by market

makers, for now we take this as given and use an example to fix ideas. To operationalize

this idea that changes in price will induce trading we start with a measure of net share

gamma which captures the number of shares that need to be purchased by the market

makers given a $1 increase in the stock price. Here it is crucial that we use the net open

interest of the option market makers (or more generally delta-hedgers).

Net Share Gammat =
Jt∑
j=1

Net Open Interestdelta hedgers
j,t Γj(t, St)

We then rescale this measure so that it is expressed in terms of dollar volume traded per

1% move in the stock price, a measure commonly used by practitioners

$ Gamma 1%t = Net Share Gammat × St ×
St

100

This tells us the dollar volume of stock that would be traded given a hypothetical move

of 1% in the stock price. We can compare this to the total dollar volume traded in the

stock on a given day

$ Volume = V olumet × St
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Finally, we can also calculate the realized dollar volume of stock traded on day t due to

delta hedging, by combining the Net Share Gammat and the realized return 11

$ Gamma Realizedt = Net Share Gammat × St ×Rt

Figure 1 contains two visual examples of the relationship between Dollar Net Gamma

and liquidity (Percent Price Impact) for one of our sample firms (Meta Platforms Inc.).

Figure 1 Panel A contains a kernel density estimate for the distribution of price impact

in two different states - when Dollar Net Gamma is greater than zero, and less than

zero respectively. Given the discussion above, we expect liquidity conditions and market

quality to be better when market maker Net Gamma is higher because of increased

liquidity supply. It is clear from the graph that the distribution of Price Impact is much

tighter and concentrated closer to zero when Dollar Net Gamma is positive, when Dollar

Net Gamma is negative we see a much longer tail in the distribution of price impacts,

suggesting that the mechanical liquidity demand of option hedgers in the stock market

affects market quality. Panel B contains a time series plot of the Net (dollar) Gamma

and Price Impact. We calculate one-month moving averages of the variables to make

the data easier to visualize (we also lag the Dollar Net Gamma by one day relative to

the realization of price impact). We can see that on average periods with high Net

Gamma have relatively lower price impact which suggests that the results in Panel A are

not coming from some time effects (such as both dollar gamma and price impact being

subject to a time trend).

11This is an estimate which is accurate for small returns, when returns are extreme there may also be
changes in implied volatility which will induce more trading through the sensitivity of delta to implied
volatility (we ignore this second-order sensitivity which is named vanna in the option trading community).
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4 Data and Variables

We use three main databases. We use the Millisecond Trade and Quote data, the

“Daily Product” from TAQ, Open/Close data from the Chicago Board Options Exchange

(CBOE) and the NASDAQ International Securities Exchange (ISE), and stock price and

volume data from CRSP. We include common stocks with share codes 10 or 11 and

stocks with exchange codes 1, 2 or 3 corresponding to the NYSE, NYSE MKT (formerly

AMEX), NASDAQ. After calculating liquidity measures, and net gamma for each stock

we keep only stocks for which we have at least 500 trading days.

4.1 Liquidity Measures

We use the Daily Trade And Quote (DTAQ) database to calculate the liquidity measures.

Holden and Jacobsen (2014) show that DTAQ is the first best solution for calculating

liquidity measures and we refer interested readers to their paper for detailed sample

cleaning and institutional details. 12

The percent quoted spread for time interval s is defined as

Percent Quoted Spreads =
As −Bs

Ms

where As is the National Best Ask and Bs is the National Best Bid assigned to time

interval s by a particular trade classification technique and Ms is the midpoint, which is

the average of Bs and As. We aggregate to the daily level and calculate for each stock the

time-weighted average of the Percent Quoted Spread over all time intervals and denote

this variable as the Quoted Spread.

12We thank the authors for making their code available online.
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The percent effective spread for a given stock on trade k is defined as

Percent Effective Spreadk =
2Dk(Pk −Mk)

Mk

where Dk is an indicator variable that equals +1 if the kth trade is a purchase, −1 if

the kth trade is a sale, and Pk is the trade price. We aggregate to the daily level by

calculating for each stock the dollar-volume-weighted average of the Percent Effective

Spread over all trades and denote this variable as the Effective Spread.

The percentage effective spread can be decomposed into a permanent and a transitory

component, the temporary component which is the realized spread, and the permanent

component which is the price impact.

The percent realized spread on the kth trade on a given stock is defined as

Percent Realized Spreadk =
2Dk(Pk −Mk+5)

Mk

where Mk+5 is the midpoint five minutes after the midpoint Mk. We aggregate to the

daily level by calculating for each stock the dollar-volume- weighted average of the Percent

Realized Spread over all trades and denote this variable as the Realized Spread.

The percent price impact on the kth trade on a given stock is defined as

Percent Price Impactk =
2Dk(Mk+5 −Mk)

Mk

We aggregate to the daily level by calculating for each stock the dollar-volume-weighted

average of the Percent Price Impact over all trades and denote this variable as the Price

Impact.
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The Percent Realized Spread and Percent Price Impact are a function ofDk which requires

the use of a trade classification algorithm. There are three widely used trade classification

classification algorithms: First is that of Lee and Ready (1991) in which a trade is

classified buy if Pk > Mk, a sell if Pk < Mk , or tick test is used if Pk = Mk. Using the

tick test, a trade is classified as a buy (sell) if the last trade at a different price was at

a lower (higher) price than Pk; second is that of Ellis et al. (2000) in which a trade is

classified buy if Pk = Ak, a sell if Pk = Bk, and the tick test is used otherwise; the third

method is Chakrabarty et al. (2007) in which a trade is a buy if Pk ∈ [0.3Bk+0.7Ak, Ak],

a sell if Pk ∈ [Bk, 0.7Bk + 0.3Ak], and the tick test is used otherwise. We do not take a

stance on the correct algorithm, rather we show the main results for all three methods,

and show other results using the Lee and Ready (1991) algorithm while verifying that

research conclusions do not change with alternative classification methods.

These various measures tell us about different dimensions of liquidity. Specifically, the

quoted spread is a good indicator of trading costs for a small investor who does not expect

their trade size to move prices. The effective spread takes into account latent liquidity or

movements in the price due to a trade absorbing all of the depth at the given quote and

executing on higher or lower limit orders. Realized spreads pick up price changes from the

trade-price to the post-trade value and can be thought about as a proxy for market maker

revenues. Price impact reflects the cost market makers face when trading with informed

traders, after such a trade the price will not reverse as the information is incorporated

into the price. We can see the realized spread is equal to the effective spread less price

impact. Some studies refer to price impact and realized spreads as the ‘permanent” and

“transitory” price impacts of a trade or as the “informational” and “non-informational”

impact of trading.
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4.2 Calculation of market maker gamma

CBOE and ISE classify trades by trader group and type. Trader groups are public

customers (retail traders and professional customers), firms (firm proprietary traders and

broker dealers) and market makers. Trade types are either open buy, open sell (an option

is written), close buy (a written option is closed out) or close sell (a purchased option is

closed out). By tracking the daily movements of each category and type of trade we can

follow the total open interest of each trader group. We are interested in the total open

interest of likely delta hedgers which represents the net option demand of retail traders

that must be delta hedged by intermediaries.

Net Open Interest∆hedgers
j,t = Open InterestSell,Retail

j,t − Open InterestBuy,Retail
j,t

where for each option series j

Open InterestSell,Retail
j,t = Open InterestSell,Retail

j,t−1 +V olumeOpenSell
j,t −V olumeCloseBuy

j,t

and

Open InterestBuy,Retail
j,t = Open InterestBuy,Retail

j,t−1 +V olumeOpenBuy
j,t −V olumeCloseSell

j,t

Where Open Buy and Open Sell represent new purchased and written options by cus-

tomers and Close Buy and Close Sell represent the closure of existing positions.

To calculate the net gamma for an individual stock, we account for the fact that each

option contract is written on 100 shares of the underlying stock and sum the gamma

across all open series on day t
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Net Share Gammat =
Jt∑
j=1

100× Net Open Interestdelta hedgers
j,t Γj(t, St)

In this form, larger firms with more option trading will mechanically have higher Net

Share Gamma, so we rescale the net gamma to make the variable comparable across

firms, we choose the rescaling in Ni et al. (2021) to make NetΓt dimensionless.

NetΓt =
Jt∑
j=1

100

(
St

Mt

)
× Net Open Interestdelta hedgers

j,t Γj(t, St) (1)

Where Jt is the number of open option series on the stock, St is the stock price and

Mt is the number of shares outstanding all measured at t. Since each individual stock

will have somewhat unique liquidity conditions, we don’t expect the relationship between

NetΓ and liquidity to be identical across stocks. For this reason we will later estimate

the relationship firm-by-firm allowing the coefficients for each stock to differ.

We can only estimate the positions of likely delta hedgers because the trading volume

data are from the CBOE and ISE together compose only about 50% of the options trading

volume. Using data from these two exchanges will induce classical measurement error

to our gamma variable which will bias us against finding any relationship between NetΓ

and liquidity.

Our measure of NetΓ depends on whether we include firm proprietary traders in the set of

likely delta hedgers. Market makers and broker dealers are almost certain to hedge their

inventory while proprietary traders are assumed to mostly delta hedge their inventory.
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5 Empirical Analysis

5.1 Likely Delta Hedgers and Retail Trading

The option trades in our dataset can be classified into three broad categories which

include public customers, firms, and market-makers. Trades initiated by firms can be

broken down further into trades by broker dealers and proprietary traders. Crucially for

our study, transactions initiated by public customers can be further classified into retail

investors and those by institutional investors such as hedge funds (called “professional

customers”). 13 The estimate of NetΓt−1 depends on our assumption about the identities

of likely delta hedgers. The literature either uses market-makers and broker-dealers or

market-makers, broker-dealers and firm proprietary traders as the likely delta hedgers.

Since our focus is on trades of retail investors with intermediaries we follow Chen et al.

(2019) to merge firm proprietary traders and market-makers as one group and observe

how their trades with public investors affect the market.

Our focus is on the effect of retail investors on market liquidity through delta hedging

of net option positions. However, our measure for NetΓ includes both retail traders

and “professional customers” who may be considered more sophisticated investors. To

alleviate the concern that our measure of retail trading is distorted by these investors, we

show that they make up a negligible portion of overall public customer trading volume.

14

Table 1 contains data on the percentage of total trading volume for each firm which is

13This further granularity which allows us to distinguish between professional customers and retail
traders is only possible after 2009 for the NASDAQ data and after 2011 for the CBOE data.

14It is also worth highlighting that many of these professional customer trades are likely coming from
products such as CallWrite and PutWrite funds which are ultimately sold back to retail investors.
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accounted for by each category of trader. We calculate the percentage of non-delta-hedger

volume for each category of trader at the firm level, and then calculate averages of each

statistic across firms. If we assume likely delta hedgers are firm investors and market

makers we see that almost all of the trading volume comes from retail investors and not

professional customers. Table 1 Panel A shows that the average firm has median retail

trading of 97% and professional customer trading of 3%, even at the first percentile 83%

of trading is accounted for by retail trades. Table 1 Panel B shows that even if we remove

firm investors from the set of likely delta hedgers, the vast majority of non-delta-hedger

trading is coming from retail investors with the average firm having a median of 78%

retail trading. Later we show that our results are robust to assuming that the likely

delta-hedgers do not contain firm proprietary traders.

5.2 Descriptive Statistics

Our final sample contains 4,279,421 daily observations for 2,639 unique firms from 2011

to 2019.

Table 2 contains summary statistics for the main variable and control variables used in

the paper. We calculate the statistics for each firm, and then average across firms. We

can see that the mean and median of NetΓ is positive, meaning that on average for

each firm, retail investors are net short options which have to be delta hedged by market

makers. We also present multiple spread measures. The average quoted spread is 0.30%

while the average effective spread is 0.24% which can be decomposed into 0.08% realized

spread and 0.16% price impact using the method of Lee et al. (1993), with alternative

trade classification measures giving qualitatively similar values.
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5.3 Regression Specification

Our primary focus is the relationship between delta-hedger gamma from retail-trading

and measures of market quality. To this end we specify, for each stock the following

regression model:

LIQt = a+ b×NetΓt−1 +
L∑
l=1

cl ×Xl,t−1 + εt (2)

The regression model is estimated for each stock, and we report the cross-sectional aver-

age coefficient estimates. Standard errors are constructed from a covariance matrix for

the average coefficients that is formed by clustering observations by date and firm with

common shocks (see Thompson (2011)). The key prediction is that NetΓt−1 is negatively

related to measures of liquidity at time t. 15

As we run the regression stock-by-stock, this coefficient captures the average relationship

across all stocks. Although we normalize the net-gamma measure to make it comparable

across stocks, we cannot guarantee that the relationship has the same coefficient for

each stock, thus we use the same regression specification as Ni et al. (2021). Another

advantage of this specification is that we do not need to worry about time-invariant stock

characteristics that determine liquidity. Some firms may have relatively higher or lower

levels of NetΓ relative to others which could have a time-invariant level effect on market

quality and we cannot identify these effects as they can not be distinguished from other

15Many authors have noted historical time trends in liquidity as well as sharp drops in spreads related
to tick-size changes (from eights to sixteenths in 1997 and decimalization in 2001) which induced them
to use changes or deviations from trends in their specifications (see e.g. Comerton-Forde et al. (2010).
The sample from 2011 to 2019 does not display any time trend.
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time-invariant firm characteristics. We control for volatility by including up to 10 lags of

absolute returns and absolute returns interacted with a positive return dummy to account

for the asymmetric response of volatility to negative returns, we also control for 10 lags

of the dependent variable to account for any persistence in liquidity.

5.4 Main results

5.4.1 Overall Sample

The results are contained in Table 3. We can see that for each measure of liquidity there

is a statistically negative relationship between NetΓt−1 and that measures of liquidity on

day t. The results are intuitive, first the economic significance of the relationship between

NetΓ and the Quoted Spread is quite small, amounting to about 1.5% of the daily average

value. This is sensible as the liquidity demand and supply mechanism related to option

trading needs some movement in the price of the underlying before the option delta is

changed and the mechanism is activated. Nonetheless, market makers of the underlying

asset who detect greater uninformed trading may be willing to reduce spreads a little. For

the regression with Effective Spread as the dependent variable the coefficient on NetΓ is

-0.033, since a 1 standard deviation move in gamma is 0.006 this translates to a -2 basis

point change in the Effective Spread for every standard deviation move in gamma which

is approximately 8% of the overall average level of the Effective Spread. The effect on

Price Impact is slightly larger at 10% while the largest impact of option trading is on

Realized Spread with a one-standard deviation move explaining over 11% of the mean

percent realized spread. This result is intuitive - when NetΓ is positive the equity option

hedge trading represents mechanical liquidity supply that competes with existing market

makers.
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The overall message from these results is that, on average across stocks, retail option

trading that results in changes in the NetΓ position of equity option market makers can

make a significant difference to the market quality of the underlying stock. Increases

(decreases) in NetΓ lead to improvement or deterioration in all measured aspects of

market quality. Market marker profits as measured by the transitory component of the

spread as well as the price impact of potential informed traders are most affected. The

economic size of these results is large, considering these effects are latent and contingent

on sufficient movements in the underlying asset to elicit changes in the optimal option

hedge. In the next section we move on to empirical tests which highlight time periods

and stocks where the effect is expected to be particularly large.

5.4.2 Evidence From Earnings Announcement Periods

Our main results show that delta hedgers in the option market affect underlying market

quality through their mechanical liquidity demand and supply. In this section, we show

the impact of this liquidity plays a more important role when existing market makers are

reluctant to provide liquidity.

The period leading up to an earnings announcement is a perfect setting to test the effect

of latent liquidity on measures of liquidity, because these effects can only be seen in cases

when equity option market makers delta hedge trades are the marginal trades in the

market. This is more likely when traditional liquidity providers have a reduced incentive

to make the market. Krinsky and Lee (1996) show that the adverse selection component

of the bid-ask spread increases around earnings announcements and Johnson and So

(2018) show that market makers supply liquidity asymmetrically leading up to earnings

announcements. Lee et al. (1993) show that spreads widen in the lead-up to earnings
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announcements suggesting liquidity providers use spreads to actively manage information

asymmetry risk.

To see why stock-trading coming from the re-hedging of a market maker’s options port-

folio should have more impact during periods of relatively higher information asymmetry

consider typical models of trading with information asymmetry such as Kyle (1985) or

Glosten and Milgrom (1985) in which uninformed investors and informed investors trade

with an optimizing market maker (or auctioneer). These models rely on a market maker

(or auctioneer) who behaves rationally and conditions the price (or the bid ask spread)

on available information about the ratio of informed and uninformed traders. The intro-

duction of an options market maker who is hedging a positive net gamma position would

effectively introduce a competitor for the market maker who supplies liquidity at given

price points (those points at which the option portfolio is re-hedged) without conditioning

on any information. This non-optimizing trader is much more likely to be the marginal

liquidity supplier in a market where information asymmetry risk is higher and optimizing

market makers hedge this risk by reducing the quantity of shares in the limit order book.

Likewise, the introduction of a market maker who is hedging a positive net gamma posi-

tion would effectively introduce a non-strategic trader who systematically takes liquidity

at certain price points (re-hedging the delta) which will impact prices/spreads as long

as equity market makers cannot distinguish their non-informational trades from other

trades in the market.

To test the hypothesis that latent liquidity effects driven by retail option trading are

stronger in the lead-up to earnings announcements we estimate the regression model

of the previous section augmented with an interaction term between NetΓ and EARN

where the variable EARN is equal to 1 in the three trading days leading up to the

21



earnings announcement day, and zero otherwise. The specification is:

LIQt = a+ b×NetΓt−1 + c×NetΓt−1 × EARNt +
L∑
l=1

cl ×Xl,t−1 + εt (3)

To the extent that the impact of latent liquidity is stronger in the lead-up to earnings we

expect the estimated average coefficient ĉ to be negative and economically significant.

The results are contained in Table 4. We can see that all four liquidity measures are

impacted more heavily by option-hedge trading during earnings periods. This suggests

that retail option trading can have a particularly large impact on stocks with already

fragile trading environments due to perceived information asymmetry. Adding the base-

line effect to the interaction effect we see that the magnitude of the result is twice as large

for Quoted Spread, Realized Spread, and Price Impact, while the result is three times as

large for the Effective Spread measure.

5.4.3 Evidence from high information asymmetry stocks

The evidence above suggests that the effect of latent liquidity from retail option trad-

ing is stronger at times when adverse selection risk is higher. A related question is the

importance of stock level information asymmetry, we would expect this effect to also be

stronger in firms where the overall information environment makes information asym-

metry risk a larger concern for market makers in the equity. We test this idea with a

commonly used measure of information asymmetry, namely analyst disagreement. Sadka

and Scherbina (2007) use this measure to investigate the link between mispricing and

liquidity. We calculate analyst disagreement in each year as the standard deviation of

all outstanding fiscal year earnings forecasts scaled by the absolute value of the mean

forecast. In stocks where analysts disagree more about potential earnings there is greater
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scope for informed traders to take advantage of their information, and thus market mak-

ers are change the price of liquidity. However, latent liquidity demand and supply that

arises from retail option trader imbalances and delta hedging of market maker inventory

must be demanded or supplied as a function of the delta hedging needs, without taking

into account adverse selection.

The results are contained in Table 5. We can see that for every measure of liquidity, stocks

with high analyst disagreement - which we expect to have more information asymmetry

risk for market makers - are more affected by delta hedging of net retail option positions.

The differences in the effect size between low and high dispersion stocks 20% for Quoted

Spread, for Effective Spread the effect size is approximately 4 times as large. For the Price

Impact variable the effect size is approximately twice as large, giving an effect size of 13%

for high dispersion stocks relative to 6% for low dispersion stocks. This suggests that

retail option trading can be particularly impactful in stocks with already fragile trading

environments due to perceived information asymmetry.

As an alternative measure of information asymmetry we also consider analyst forecast

coverage, we expect stocks with low coverage to have a poorer information environment

which presents better opportunities for informed traders and thus more risk averse behav-

ior of market makers when providing liquidity. Results in Table 6 show the relationship

between NetΓt−1 and various measures of liquidity. Except for Quoted Spread which has

a similar effect size for high and low analyst coverage stocks, the effect sizes for the other

variables are three to ten times as large for low analyst coverage stocks relative to high

analyst coverage stocks.
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5.5 Decomposition of NetΓ

While the effects of NetΓ on liquidity will exist regardless of the source of the net option

imbalance that must be delta hedged, the interpretation of this statistical coefficient

estimate depends on whether the variation comes from informed or uninformed trading.

If informed traders anticipate changes in volatility which thus anticipates changes in

liquidity, it could bias our estimate. To deal with this we decompose our NetΓ measure

to remove variation potentially related to informed trading.

Following Ni et al. (2021) we decompose NetΓ into 3 components. The NetΓ at any

time t can be decomposed into a component that comes from net gamma τ periods ago,

a component that comes from new option trades between t− τ and t, and a component

that comes from changes in gamma that arise from changing stock prices τ days ago until

today. Specifically, we can first decompose NetΓt into a component that comes from

trades in the last τ days and the residual:

NetΓt = NetΓt(t− τ, St)︸ ︷︷ ︸
Residual Gamma

+ [NetΓt −NetΓt(t− τ, St)]︸ ︷︷ ︸
Information Gamma

(4)

The first term gives the net gamma coming from positions opened t − τ periods ago

using the day t price. A potential concern is that the residual component still may contain

long-lived information about liquidity at time t, under the assumption that the investor

does not anticipate the change in the net gamma coming exclusively from the change in

price between time t− τ and time t we can further decompose into the gamma at period

t− τ using the stock price at t− τ and the gamma at period t− τ using the stock price

at t and the gamma at period t− τ using the stock price at t− τ :
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NetΓt = NetΓt(t− τ, St−τ )︸ ︷︷ ︸
Period t−τ Gamma

+ [NetΓt −NetΓt(t− τ, St)]︸ ︷︷ ︸
Information Gamma

+ [NetΓt(t− τ, St)−NetΓt(t− τ, St−τ )]︸ ︷︷ ︸
Hedge Gamma

(5)

Given τ = 5 the hedge gamma component captures hedge rebalancing trades due to

movement in the stock price from t-5 to t which could not have been predicted by the op-

tion trader and this makes this component relatively immune to concerns about informed

trading.

Table 7 contains the results of using the first decomposition. We can see that the non-

information gamma is negatively related to all four measures of liquidity. The economic

and statistical significance is quantitatively similar to the results reported in Table 3.

Table 8 contains the results of using the second decomposition. Using this decomposition

we see that the hedge gamma component is not significant for Quoted Spread. However,

for the Effective Spread, Realized Spread, and Price Impact, the effect sizes are even

larger than in our main specification. The effect size for Effective Spread is now 15%

which is almost twice as large as the effect size of 8% in Table 3. The effect sizes for the

Realized Spread and Price Impact are larger by 15% and 55% respectively. These results

help alleviate concerns that information driven changes in net-gamma are generating the

statistical relationship between net-gamma and liquidity.
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5.6 Robustness

In this section we consider the robustness of our main results to a variety of potential

explanations.

5.6.1 Alternative Trade Classification Algorithms

In Table 9 we assess the impact of alternative trade classification algorithms on our

results. We re-run regressions model in equation (2) using the methods of Ellis et al.

(2000) (EMO) and Chakrabarty et al. (2021) (CLNV) to calculate the Percent Realized

Spread and Percent Price Impact which rely on a trade classification algorithm. The

results on Percent Price Impact are statistically and economically slightly stronger with

the CLNV classification while being weaker with the EMO classification, while the results

on Percent Realized Spread are qualitatively similar, the economic effect sizes are lower

with the alternative trade classification algorithms.

5.6.2 Excluding Proprietary Traders from Likely delta Hedgers

Equation (1) makes clear that the measure of net-gamma depends on the group of likely

delta hedgers. While it is natural to assume firm proprietary traders are hedging the

options they hold, one can also consider a measure of gamma that considers the firm

proprietary traders to be more similar to retail investors and hold naked option positions.

We replicate Table 2 using this alternative definition of NetΓ in Table 10 and find that

the results are largely similar to those using the alternative classification. There is a

negative and statistically significant relationship between NetΓt−1 and all four liquidity

measures as in Table 3. The effect sizes for Quoted Spread and Effective Spread are almost
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identical, the effect size for Realized Spread is lower (at 4% relative to 11% in Table 3),

while the effect size for Price Impact is higher (at 13% compared to 11% in Table 3).

5.6.3 Do retail investors predict volatility?

One alternative explanation for these results is that retail investors have private infor-

mation about volatility, which they express by taking positions in the options market.

While the results of the decomposition show our results are robust to such a concern, in

this section we show a trading-strategy profitability based robustness test.

Our measure of NetΓt−1 connects the behavior of option delta-hedgers today to the deci-

sions of option traders multiple periods ago. To the extent that the aggregated decisions

of option traders reflect information about future outcomes in the market, there is a

concern that this variable picks up information as well as a delta-hedging effect.16 For

example, if retail investors expect low volatility, they may sell options on net, leaving

market makers net long gamma and if this low volatility environment is associated with

low liquidity it could explain the relationship between gamma and liquidity. 17The mech-

anism described in this paper will exist regardless of any relationship between private

information and volatility, but the policy implications are different if non-informational

trading can cause changes in liquidity as we claim.

There is much evidence to suggest retail traders are uninformed and unsophisticated,

Bryzgalova et al. (2022) suggests that retail investors lose quite a lot on their option

16It should be noted that the delta hedging effect is mechanical and the question is one of quantifying
the effect. The concern is whether the entire coefficient can be attributed to this delta-hedging effect or
some of the magnitude should be attributed to another channel such as volatility information trade.

17Ni et al. (2008) provide empirical evidence to suggest investors trade on volatility information,
however, their measure focuses on demand for vega which is concentrated in long-maturity options while
gamma is concentrated in short-maturity options.
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trades, and Lakonishok et al. (2007) estimate an upper bound of approximately 1% of

open volume on options devoted to purchased or written straddles which suggest volatility

trading. Hu (2018) also find that option introduction disproportionately increases unin-

formed trading relative to informed trading which is consistent with the findings in this

paper. Nonetheless, we test this hypothesis in our paper by considering the profitability

of a variety of volatility trading strategies using retail investor data.

If the private-volatility-information hypothesis is true, then retail investors should profit

from trading on volatility information. For an investor with private information about

volatility to profit in the options market, she needs to take a position that can profit

from information that realized volatility will be above or below market expectations (as

captured in option implied volatility). If retail investors expect realized volatility to be

high (low) they should go short (long) volatility by selling (buying) a call option and

delta-hedging the directional risk. To capture this idea we construct a time-series of

delta hedged returns at the stock level and consider a variety of trading strategies that

would profit if NetΓ is informative about volatility. In particular we consider strategies

which take a long or short position depending on the level of NetΓ. We consider strategies

which are long (short) volatility when NetΓ is negative (positive). As levels of NetΓ near

zero may reflect a lack of conviction by retail investors about the direction of volatility,

we also consider strategies when investors only take long-short positions when gamma is

at extreme levels such as above the 75th, 90th, and 95th percentile values or below the

25th, 10th, or 5th percentile values. We consider both equal-and value-weighted returns

and we assume that investors can trade at the midpoint of the bid-ask spread to give the

best possible chance of achieving economically significant returns.

The results are presented in Table 11. If investors were trading options based on private

information on volatility, we would expect strategies based on this information to display
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economically and statistically significant positive returns. The results in Panel A and B

reveal that an investor who tried to exploit information in gamma would typically make

significantly negative returns (even in the absence of transaction costs which are large for

such option trading strategies).

5.7 Option Expiration Effects

It is well known that for an at-the-money option, gamma increases strongly as time to

maturity decreases. As such, one might think that the effects described in this paper are

concentrated only in periods where options expire. While this would still be a notable

effect, it would be easier to predict and monitor for regulators and market participants

because options have a consistent expiration cycle. All options with an expiration greater

than one week, will expire on the third Friday of the expiration month. If all of the

liquidity effects in this paper are concentrated in this period, then without knowing

net-gamma, an investor or regulator could predict the existence of liquidity effects (but

not the direction which would require knowing whether retail investors are net-long or

net-short gamma).

We explore the hypothesis that the liquidity effects are concentrated in option expiration

weeks by estimating the following specification

LIQt = a+ b×NetΓt−1 + c×NetΓt−1 ×OPEXt +
L∑
l=1

cl ×Xl,t−1 + εt (6)

where OPEXt is equal to 1 if it is an option expiration week and zero otherwise. If option

expiration effects explained the earlier results, we would expect the average coefficient on

NetΓ to be statistically and economically insignificant after controlling for the interaction
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of NetΓt−1 and the OPEXt indicator.

Results are contained in Table 12. Looking across the columns for the coefficient on

the interaction term, we see that it is positive for three of our four liquidity measures,

indicating that the relationship between gamma and liquidity is typically weaker in these

option expiration weeks. While the effect of NetΓt−1 on the Realized Spread is stronger

in Option Expiration weeks, it does not control for the baseline effect. After controlling

for these periods, the main coefficients are still statistically and economically significant.

Furthermore, the effect sizes are either economically close to, or larger than the effect

sizes in the main table.

5.8 Sample Splits

In this section we investigate if particular stock characteristics are associated with our

results.

5.8.1 Coverage of CBOE ISE data

Our variable NetΓt−1 is an estimate of the actual net-gamma at any point in time as we

do not observe the totality of option trading on our sample stocks on U.S. exchanges.

As we do not have any reason to suspect option contracts traded by retail investors are

systematically opened or closed on particular exchanges (which would affect our estimate

of net gamma), we expect our estimates to contain only classical measurement error that

would bias our coefficient estimates toward zero. To verify that our results are robust to

using stocks with various levels of data coverage, we calculate coverage by calculating the

total option volume for each stock-day in our sample traded on the CBOE C1 exchange
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and the NASDAQ ISE exchange, and divide by the total option volume on that stock-day

as recorded by OptionMetrics. We then take an average across all days in the sample for

each stock to get a stock-level measure of data-coverage. We then estimate equation (2)

separately for high-and low-coverage stocks.

The results are contained in Table 13. We can see that we lose the power to identify

the effect using Effective Spread and Price Impact for stocks with low data coverage,

however can see that the results for stocks with high data coverage are statistically and

economically significant. The effect sizes for the Effective Spread, Realized Spread, and

Price Impact are economically significant, a one standard deviation change in NetΓt−1

translates into a 11.85%, 10.75% and 16.35% change in the mean of the respective de-

pendent variables. These results are either similar or stronger than our baseline results

suggesting that measurement error is not driving our results.

5.8.2 Size and volume effects

We also consider whether the effects are concentrated in small stocks with relatively low

trading volume. Our sample stocks are already quite large and well traded because of

the requirements that the stocks have traded options. Nonetheless, it seems likely that

the effects of delta-hedging on liquidity should be stronger in smaller stocks which have

lower trading volume. We investigate these ideas in Table 14 and Table 15 respectively.

Comparing the results for Table 14 Panels A and B we can see that the results exist for

Effective Spread, Realized Spread and Price Impact for both large and small stocks. The

effect sizes are approximately three times larger for small stocks at 9%, 12% and 13% of

the mean value of the dependent variable. Comparing the results for Table 15 Panels A

and B we see that volume seems more important than size for explaining heterogeneity in
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the main effect size. While the results still hold in high volume stocks for Quoted Spread,

Realized Spread, and Price Impact, the effect sizes are much lower.

6 Conclusion

This paper shows that delta-hedging of net option positions driven by retail trading

has a pervasive effect on market quality as measured by daily liquidity. These effects are

stronger in stocks with low volume or higher information asymmetry and are not explained

by informed trading, option expiration effects, or other channels. The impact depends

on the net option position of market makers as well as the movement of the underlying

stock which means that data from multiple option exchanges needs to be centralized and

the measure of potential destabilization calculated dynamically for effective oversight by

regulators.
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Figure 1: Price Impact and Dollar Gamma for Meta Platforms Inc.

This figure contains in Panel A a Kernel Density Estimate of the distribution of price
impact for the case when Dollar Net Gamma is positive and negative respectively. Panel
B contains a time series graph of average Price Impact (in basis points) and dollar Net
Gamma (in millions of USD) the time series are constructed as 20 period moving averages.
Both Panel A and Panel B contain graphs constructed using data for Meta Platforms
Inc. (formerly Facebook Inc.).

Panel A

Panel B
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Panel A: Market-makers and proprietary traders as likely delta-hedgers

mean p1 p5 p25 p50 p75 p95 p99
Retail 0.96 0.83 0.91 0.95 0.97 0.98 1.00 1.00
Pro. Customer 0.04 0.00 0.00 0.02 0.03 0.05 0.09 0.17

Panel B: Market makers as likely delta hedgers

mean p1 p5 p25 p50 p75 p95 p99

Prop. Trader 0.19 0.02 0.05 0.12 0.19 0.24 0.34 0.42
Retail 0.78 0.54 0.63 0.72 0.78 0.85 0.93 0.97
Pro. Customer 0.03 0.00 0.00 0.01 0.03 0.04 0.07 0.14

Table 1: This table contains summary statistics on the percentage of non-delta-hedger
volume accounted for by different groups of traders. Pro. Customer means Professional
Customer while Retail trade is non professional customer trade. In Panel A the likely
delta hedgers are market-makers and firm proprietary traders and in Panel B the likely
delta hedgers are market-makers. The sample includes 2,639 stocks and 4,279,421 stock-
date observations.
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mean sd p1 p10 p25 p50 p75 p90 p99

NetΓ 0.001 0.006 -0.013 -0.003 -0.001 0.001 0.003 0.006 0.019
absolute return 1.813 2.087 0.007 0.210 0.567 1.280 2.396 3.882 9.334
quoted spread (%) 0.302 0.461 0.097 0.138 0.175 0.238 0.339 0.475 0.905
effective spread (%) 0.243 0.237 0.067 0.100 0.131 0.187 0.280 0.421 1.061
realized spread LR (%) 0.078 0.378 -0.373 -0.049 0.004 0.053 0.123 0.227 0.796
realized spread EMO (%) 0.051 0.213 -0.266 -0.050 -0.005 0.034 0.087 0.165 0.525
realized spread CLNV (%) 0.073 0.308 -0.303 -0.046 0.003 0.049 0.114 0.211 0.698
price impact LR(%) 0.160 0.412 -0.294 0.025 0.068 0.121 0.202 0.330 1.052
price impact EMO(%) 0.102 0.191 -0.175 0.012 0.045 0.084 0.138 0.218 0.540
price impact CLNV (%) 0.147 0.339 -0.228 0.023 0.061 0.109 0.183 0.302 0.924

Table 2: This table contains summary statistics of the main variables used in the paper.
The statistics are calculated at the stock level, and the table contains averages of the firm
level statistics. The sample includes 2,639 stocks and 4,279,421 stock-date observations.

Quoted Spread Effective Spread Realized Spread Price Impact

Constant 0.001 0.001 0.000 0.001
(10.206) (10.171) (8.399) (14.379)

NetΓt−1 -0.008 -0.033 -0.015 -0.029
(-4.982) (-7.009) (-6.914) (-7.202)

Lag volatility controls Yes Yes Yes Yes
Lag liquidity controls Yes Yes Yes Yes

Avg. N. Obs. 2243 2243 2243 2243
Avg. R2 0.835 0.850 0.201 0.394

Table 3: This table contains the results of estimating model (2). The regression equation
is estimated for each stock, and the table contains the cross-sectional average coefficient
estimates. Avg. N. Obs. and Avg. R2 contain the cross-section average of the R-
squared and number of observations from the stock-by-stock regressions. Standard errors
are constructed from a covariance matrix for the average coefficients that is formed by
clustering observations by date and firm with common shocks, as detailed in Thompson
(2011). The lag volatility controls and lag liquidity controls use lags from 1 to 10 days
before the realization of the dependent variable. The sample includes 2,639 stocks and
4,279,421 stock-date observations.
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Quoted Spread Effective Spread Realized Spread Price Impact

Constant 0.001 0.001 0.000 0.001
(12.934) (13.590) (10.870) (14.179)

NetΓt−1 -0.013 -0.007 -0.006 -0.008
(-7.008) (-7.477) (-7.230) (-7.353)

NetΓt−1 x EARN -0.017 -0.016 -0.006 -0.006
(-3.823) (-4.798) (-2.702) (-3.166)

EARN 0.000 0.000 -0.000 0.000
(2.540) (5.526) (-1.681) (7.257)

Lag volatility controls Yes Yes Yes Yes
Lag liquidity controls Yes Yes Yes Yes

Avg. N. Obs. 2243 2243 2243 2243
Avg. R2 0.835 0.850 0.204 0.409

Table 4: This table contains the results of estimating model (3). EARN is an indicator
variable that takes a value of 1 for the period (t-3,t) where t is the firm’s quarterly
earnings date and is 0 otherwise. The regression equation is estimated for each stock,
and the table contains the cross-sectional average coefficient estimates. Avg. N. Obs. and
Avg. R2 contain the cross-section average of the R-squared and number of observations
from the stock-by-stock regressions. Standard errors are constructed from a covariance
matrix for the average coefficients that is formed by clustering observations by date and
firm with common shocks, as detailed in Thompson (2011). The lag volatility controls
and lag liquidity controls use lags from 1 to 10 days before the realization of the dependent
variable. The sample includes 2,639 stocks and 4,279,421 stock-date observations.
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Panel A: Low Dispersion of Analyst Forecasts

Quoted
Spread

Effective
Spread

Realized
Spread

Price Impact

Constant 0.001 0.001 0.000 0.001
(8.090) (8.632) (8.778) (11.383)

NetΓt−1 -0.005 -0.005 0.000 -0.010
(-3.481) (-4.487) (0.484) (-5.291)

Lag volatility controls Yes Yes Yes Yes
Lag liquidity controls Yes Yes Yes Yes

Avg. N. Obs. 1920 1920 1920 1920
Avg. R2 0.194 0.553 0.045 0.479

Panel B: High Dispersion of Analyst Forecasts

Quoted
Spread

Effective
Spread

Realized
Spread

Price Impact

Constant 0.002 0.001 0.001 0.001
(10.593) (10.913) (11.023) (16.230)

NetΓt−1 -0.013 -0.063 -0.022 -0.050
(-4.431) (-7.179) (-6.978) (-7.500)

Lag volatility controls Yes Yes Yes Yes
Lag liquidity controls Yes Yes Yes Yes

Avg. N. Obs. 2243 2243 2243 2243
Avg. R2 0.835 0.850 0.201 0.394

Table 5: This table contains the results of estimating model (2) separately for groups
of stocks with low (Panel A) and high (Panel B) dispersion of analyst forecasts. Low
(High) analyst dispersion firms are defined as those with below (above) median levels of
analyst dispersion. The regression equation is estimated for each stock, and the table
contains the cross-sectional average coefficient estimates. Avg. N. Obs. and Avg. R2
contain the cross-section average of the R-squared and number of observations from the
stock-by-stock regressions. Standard errors are constructed from a covariance matrix
for the average coefficients that is formed by clustering observations by date and firm
with common shocks, as detailed in Thompson (2011). The lag volatility controls and
lag liquidity controls use lags from 1 to 10 days before the realization of the dependent
variable. The sample includes 2,639 stocks and 4,279,421 stock-date observations.
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Panel A: Low Analyst Coverage Stocks

Quoted
Spread

Effective
Spread

Realized
Spread

Price Impact

Constant 0.002 0.001 0.001 0.002
(10.076) (10.551) (10.000) (18.187)

NetΓt−1 -0.008 -0.075 -0.037 -0.061
(-2.747) (-5.392) (-5.338) (-5.473)

Lag volatility controls Yes Yes Yes Yes
Lag liquidity controls Yes Yes Yes Yes

Avg. N. Obs. 1467.000 1467.000 1467.000 1467.000
Avg. R2 0.048 0.235 0.098 0.048

Panel B: High Analyst Coverage Stocks

Quoted
Spread

Effective
Spread

Realized
Spread

Price Impact

Constant 0.001 0.000 0.000 0.000
(9.425) (8.256) (6.577) (10.799)

NetΓt−1 -0.005 -0.003 -0.000 -0.004
(-6.008) (-5.975) (-1.641) (-6.758)

Lag volatility controls Yes Yes Yes Yes
Lag liquidity controls Yes Yes Yes Yes

Avg. N. Obs. 2243.000 2243.000 2243.000 2243.000
Avg. R2 0.835 0.850 0.201 0.394

Table 6: This table contains the results of estimating model (2) separately for groups
of stocks with low (Panel A) and high (Panel B) analyst coverage. Low (High) analyst
coverage firms are defined as those with below (above) median levels of analyst coverage.
The regression equation is estimated for each stock, and the table contains the cross-
sectional average coefficient estimates. Avg. N. Obs. and Avg. R2 contain the cross-
section average of the R-squared and number of observations from the stock-by-stock
regressions. Standard errors are constructed from a covariance matrix for the average
coefficients that is formed by clustering observations by date and firm with common
shocks, as detailed in Thompson (2011). The lag volatility controls and lag liquidity
controls use lags from 1 to 10 days before the realization of the dependent variable. The
sample includes 2,639 stocks and 4,279,421 stock-date observations.
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Quoted Spread Effective Spread Realized Spread Price Impact

Constant 0.001 0.001 0.000 0.001
(10.213) (10.155) (8.615) (14.442)

Residual Γt−1 -0.008 -0.037 -0.015 -0.032
(-5.236) (-6.941) (-6.975) (-7.131)

Information Γt−1 0.006 -0.019 0.017 -0.045
(2.328) (-8.374) (5.811) (-9.705)

Lag volatility controls Yes Yes Yes Yes
Lag liquidity controls Yes Yes Yes Yes

Avg. N. Obs. 2243 2243 2243 2243
Avg. R2 0.835 0.850 0.201 0.399

Table 7: This table contains the results of estimating model (2) using the decomposition
of NetΓ of (4). The regression equation is estimated for each stock, and the table
contains the cross-sectional average coefficient estimates. Avg. N. Obs. and Avg. R2
contain the cross-section average of the R-squared and number of observations from the
stock-by-stock regressions. Standard errors are constructed from a covariance matrix for
the average coefficients that is formed by clustering observations by date and firm with
common shocks, as detailed in Thompson (2011). The volatility controls and lag liquidity
controls use lags from 1 to 10 days before the realization of the dependent variable. The
sample includes 2,633 stocks and 4,257,544 stock-date observations.
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Quoted Spread Effective Spread Realized Spread Price Impact

Constant 0.001 0.001 0.000 0.001
(10.221) (10.161) (8.629) (14.489)

Hedge Γt−1 0.002 -0.085 -0.023 -0.056
(0.923) (-4.385) (-4.552) (-4.486)

Information Γt−1 0.007 -0.021 0.019 -0.048
(2.454) (-7.355) (5.911) (-9.415)

t-τ Γt−1 -0.013 -0.025 -0.013 -0.024
(-6.104) (-5.325) (-7.141) (-6.938)

Lag volatility controls Yes Yes Yes Yes
Lag liquidity controls Yes Yes Yes Yes

Avg. N. Obs. 2243 2243 2243 2243
Avg. R2 0.835 0.850 0.201 0.399

Table 8: This table contains the results of estimating model (2) using the decomposition
of NetΓ of (5). The regression equation is estimated for each stock, and the table
contains the cross-sectional average coefficient estimates. Avg. N. Obs. and Avg. R2
contain the cross-section average of the R-squared and number of observations from the
stock-by-stock regressions. Standard errors are constructed from a covariance matrix for
the average coefficients that is formed by clustering observations by date and firm with
common shocks, as detailed in Thompson (2011). The volatility controls and lag liquidity
controls use lags from 1 to 10 days before the realization of the dependent variable. The
sample includes 2,633 stocks and 4,257,544 stock-date observations.
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(EMO) (CLNV) (EMO) (CLNV)
Realized Spread Realized Spread Price Impact Price Impact

Constant 0.000 0.000 0.001 0.001
(9.886) (8.649) (13.381) (14.001)

NetΓt−1 -0.003 -0.010 -0.007 -0.032
(-6.050) (-6.893) (-7.623) (-7.196)

Lag volatility controls Yes Yes Yes Yes
Lag liquidity controls Yes Yes Yes Yes

Avg. N. Obs. 2243 2243 2243 2243
Avg. R2 0.219 0.221 0.357 0.388

Table 9: This table contains the results of estimating model (2) using the trade classifi-
cation algorithms of Ellis et al. (2000) (EMO) and Chakrabarty et al. (2021) (CLNV) to
calculate the Percent Realized Spread and Percent Price Impact. The regression equation
is estimated for each stock, and the table contains the cross-sectional average coefficient
estimates. Avg. N. Obs. and Avg. R2 contain the cross-section average of the R-squared
and number of observations from the stock-by-stock regressions. Standard errors are con-
structed from a covariance matrix for the average coefficients that is formed by clustering
observations by date and firm with common shocks, as detailed in Thompson (2011).
The lag volatility controls and lag liquidity controls use lags from 1 to 10 days before the
realization of the dependent variable. The sample includes 2,639 stocks and 4,279,421
stock-date observations.
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Quoted Spread Effective Spread Realized Spread Price Impact

Constant 0.001 0.001 0.000 0.001
(10.599) (10.663) (10.373) (15.786)

NetΓt−1 -0.009 -0.044 -0.007 -0.052
(-3.985) (-4.343) (-4.160) (-4.334)

Lag volatility controls Yes Yes Yes Yes
Lag liquidity controls Yes Yes Yes Yes

Avg. N. Obs. 2494 2494 2494 2494
Avg. R2 0.840 0.851 0.196 0.381

Table 10: This table contains the results of estimating model (2) using an alternative
definition of NetΓt−1 which includes firm proprietary traders in the set of likely delta
hedgers. The regression equation is estimated for each stock, and the table contains
the cross-sectional average coefficient estimates. Avg. N. Obs. and Avg. R2 contain the
cross-section average of the R-squared and number of observations from the stock-by-stock
regressions. Standard errors are constructed from a covariance matrix for the average
coefficients that is formed by clustering observations by date and firm with common
shocks, as detailed in Thompson (2011). The lag volatility controls and lag liquidity
controls use lags from 1 to 10 days before the realization of the dependent variable. The
sample includes 2,639 stocks and 4,279,421 stock-date observations.
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Panel A: Equal Weighted Portfolio returns

A B C D
zero p50 p75 (p25) p90 (p10)

Return 0.78 -0.87∗ -0.44 -0.56∗∗

(1.49) (-1.93) (-1.30) (-2.19)

Panel B: Value Weighted Portfolio returns

A B C D
zero p50 p75(p25) p90(p10)

Return 0.02 -0.46 -0.65∗∗ -0.60∗∗∗

(0.25) (-1.09) (-2.22) (-3.48)

Table 11: This table contains equal- and value-weighted annualised returns for portfolios
that trade using rules derived from the data on NetΓt−1. The basic strategy takes a
long (short) position in each stock when it’s level of gamma is above or below a given
threshold. Column A (B) contains results for a long short strategy with a long (short)
position when NetΓ is above (below) zero (the 50th percentile, p50). Column C (D)
contains results for a long short strategy that takes a long position when NetΓ is above
the 75th percentile (90th percentile) and a short position when NetΓ is below the 10th
percentile (5th percentile). Portfolio returns are an averages across stocks in each time
period to calculate an average return. Panel A contains results for an equal weight
average across stocks while and Panel B contains results for a market-capitalization value
weighted average across stocks in each time period. The sample period is from 2011 to
2019. Returns are annualized percentage returns. *, **, and *** denote significance at
the 10%, 5%, and 1% levels, respectively.
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Quoted Spread Effective Spread Realized Spread Price Impact

Constant 0.001 0.001 0.000 0.001
(10.265) (10.145) (8.546) (14.497)

NetΓt−1 -0.010 -0.043 -0.016 -0.039
(-5.846) (-7.856) (-7.979) (-8.194)

NetΓt−1 x OPEXt 0.011 0.053 -0.004 0.060
(6.860) (7.202) (-1.152) (6.574)

OPEXt -0.000 0.000 -0.000 0.000
(-1.774) (1.261) (-0.567) (0.388)

Lag volatility controls Yes Yes Yes Yes
Lag liquidity controls Yes Yes Yes Yes

Avg. N. Obs. 2243 2243 2243 2243
Avg. R2 0.835 0.850 0.200 0.394

Table 12: This table contains the results of estimating model (6). The regression
equation is estimated for each stock, and the table contains the cross-sectional average
coefficient estimates. Avg. N. Obs. and Avg. R2 contain the cross-section average of
the R-squared and number of observations from the stock-by-stock regressions. Standard
errors are constructed from a covariance matrix for the average coefficients that is formed
by clustering observations by date and firm with common shocks, as detailed in Thompson
(2011). The lag volatility controls and lag liquidity controls use lags from 1 to 10 days
before the realization of the dependent variable. The sample includes 2,639 stocks and
4,279,421 stock-date observations.
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Panel A: Stocks with Low Data Coverage

Quoted
Spread

Effective
Spread

Realized
Spread

Price Impact

Constant 0.001 0.001 0.000 0.001
(9.252) (9.296) (8.304) (12.541)

NetΓt−1 -0.011 -0.001 -0.010 0.001
(-5.667) (-1.382) (-5.601) (0.997)

Lag volatility controls Yes Yes Yes Yes
Lag liquidity controls Yes Yes Yes Yes

Avg. N. Obs. 2243 2243 2243 2243
Avg. R2 0.835 0.850 0.201 0.394

Panel B: Stocks with High Data Coverage

Quoted
Spread

Effective
Spread

Realized
Spread

Price Impact

Constant 0.002 0.001 0.001 0.001
(9.461) (9.449) (6.924) (13.933)

NetΓt−1 -0.004 -0.068 -0.021 -0.060
(-1.687) (-6.562) (-6.290) (-6.690)

Lag volatility controls Yes Yes Yes Yes
Lag liquidity controls Yes Yes Yes Yes

Avg N. Obs. 1467 1467 1467 1467
Avg R2 0.048 0.235 0.098 0.048

Table 13: This table contains the results of estimating model (2) separately for groups
of stocks with below median (Panel A) and above median (Panel B) coverage of data
for estimating NetΓ. The regression equation is estimated for each stock, and the table
contains the cross-sectional average coefficient estimates. Avg. N. Obs. and Avg. R2
contain the cross-section average of the R-squared and number of observations from the
stock-by-stock regressions. Standard errors are constructed from a covariance matrix
for the average coefficients that is formed by clustering observations by date and firm
with common shocks, as detailed in Thompson (2011). The lag volatility controls and
lag liquidity controls use lags from 1 to 10 days before the realization of the dependent
variable. The sample includes 2,639 stocks and 4,279,421 stock-date observations.
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Panel A: Below Median Size Stocks

Quoted
Spread

Effective
Spread

Realized
Spread

Price Impact

Constant 0.002 0.001 0.001 0.002
(9.989) (11.397) (10.835) (19.925)

NetΓt−1 -0.017 -0.070 -0.033 -0.061
(-4.960) (-6.148) (-6.143) (-6.300)

Lag volatility controls Yes Yes Yes Yes
Lag liquidity controls Yes Yes Yes Yes

Avg N. Obs. 1467 1467 1467 1467
Avg R2 0.048 0.235 0.098 0.048

Panel B: Above Median Size Stocks

Quoted
Spread

Effective
Spread

Realized
Spread

Price Impact

Constant 0.001 0.000 0.000 0.000
(11.712) (9.460) (9.303) (11.950)

NetΓt−1 -0.000 -0.004 -0.001 -0.003
(-0.480) (-5.649) (-3.687) (-6.235)

Lag volatility controls Yes Yes Yes Yes
Lag liquidity controls Yes Yes Yes Yes

Avg N. Obs. 2243 2243 2243 2243
Avg R2 0.835 0.850 0.200 0.391

Table 14: This table contains the results of estimating model (2) separately for groups
of stocks with below median (Panel A) and above median (Panel B) dispersion of analyst
forecasts. The regression equation is estimated for each stock, and the table contains
the cross-sectional average coefficient estimates. Avg. N. Obs. and Avg. R2 contain the
cross-section average of the R-squared and number of observations from the stock-by-stock
regressions. Standard errors are constructed from a covariance matrix for the average
coefficients that is formed by clustering observations by date and firm with common
shocks, as detailed in Thompson (2011). The lag volatility controls and lag liquidity
controls use lags from 1 to 10 days before the realization of the dependent variable. The
sample includes 2,639 stocks and 4,279,421 stock-date observations.
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Panel A: Below Median Volume Stocks

Quoted
Spread

Effective
Spread

Realized
Spread

Price Impact

Constant 0.002 0.001 0.001 0.002
(10.273) (10.803) (10.149) (19.275)

NetΓt−1 -0.014 -0.071 -0.034 -0.061
(-3.776) (-5.508) (-5.411) (-5.612)

Lag volatility controls Yes Yes Yes Yes
Lag liquidity controls Yes Yes Yes Yes

Avg N.Obs. 1467 1467 1467 1467
Avg R2 0.047 0.233 0.099 0.046

Panel B: Above Median Volume Stocks

Quoted
Spread

Effective
Spread

Realized
Spread

Price Impact

Constant 0.001 0.000 0.000 0.000
(9.503) (7.884) (6.933) (10.727)

NetΓt−1 -0.003 -0.001 0.000 -0.001
(-4.341) (-2.702) (0.996) (-5.140)

Lag volatility controls Yes Yes Yes Yes
Lag liquidity controls Yes Yes Yes Yes

Avg N. Obs. 2243 2243 2243 2243
Avg R2 0.835 0.850 0.200 0.391

Table 15: This table contains the results of estimating model (2) separately for groups of
stocks with below median (Panel A) and above median (Panel B) volume. The regression
equation is estimated for each stock, and the table contains the cross-sectional average
coefficient estimates. Avg. N. Obs. and Avg. R2 contain the cross-section average of
the R-squared and number of observations from the stock-by-stock regressions. Standard
errors are constructed from a covariance matrix for the average coefficients that is formed
by clustering observations by date and firm with common shocks, as detailed in Thompson
(2011). The lag volatility controls and lag liquidity controls use lags from 1 to 10 days
before the realization of the dependent variable. The sample includes 2,639 stocks and
4,279,421 stock-date observations.
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